DeepMIMO v2

DeepMIMO v2 Features

  • Includes all features of DeepMIMO v1

  • Optimized memory requirements and generation speed

  • Generates the channels between BSs and UEs

  • Generates the channels between BSs and BSs (enabling integrated access-backhaul, etc.)

  • Allows for multiple antennas at both the BSs and UEs

  • Generates OFDM and time-domain channels

  • Outputs path parameters, path-loss, distances, among other possible outputs

  • Outputs transmitter/receiver locations

  • Available in Matlab, Octave, and Python

How Does it Work?

DeepMIMO v2 dataset generator processes the input ray-tracing parameters to generate the output dataset based on the parameters’ values specified in the DeepMIMO parameters file. 

 

deepmimowebpage-01

 

[Figure with the parameter list and possible outputs]

 — outputs (on the figure)  Generated datasets can include the information about

  • MIMO OFDM wireless channels 
  • Locations of the users and basestations
  • Path information (AoA, AoD, path loss etc.)
  • Line-of-sight path availability
which can be activated based on the defined set of parameters.

Check the detailed documentation below for more information about the DeepMIMO v2 parameters and outputs

How to Generate a DeepMIMO v2 Dataset?

Step 1: (Generator scripts)

  • Download DeepMIMO v2 MATLAB generator scripts.
  • Extract the file DeepMIMOv2.zip

Step 2: (Scenario)

  • Select and download a scenario from the scenarios page.
  • Extract scenario folder into the path DeepMIMOv2/Raytracing_scenarios/

Step 3: (Parameter Configuration)

  • Configure DeepMIMO parameters  in parameters.m file.

Step 4: (Data Generation)

  • Edit and run DeepMIMO_Dataset_Generator.m to configure and generate the dataset.

Input Parameters

scenario string

 

Name of the scenario to be loaded. To check and download available scenarios, please check the scenarios page.

scene_first, scene_last integers

 

[For dynamic scenarios] Determines the range of dynamic scenario scenes to be loaded [scene_first, scene_last]

active_BS integer array of active BSs

 

The ID of the basestations to be included in the dataset. The basestation IDs can be selected from the scenario description. In the final dataset, the activated basestations IDs are renumbered in the same order starting from 1 to the number of active basestations.

active_user_first, active_user_last integers

 

The range of rows are determined by these parameters. 

Specifically, the row of users with the ID in the range [active_user_first, active_user_last] are selected.

row_subsampling float in the range (0, 1]

 

This parameter determines the ratio of the rows to be activated within the interval [active_user_first, active_user_last].

Speficially, it randomly samples round(row_subsampling*(active_user_last-active_user_first)) rows within the given interval.

The value 1 activates all the rows within the interval.

user_subsampling float in the range (0,1)

 

This parameter determines the ratio of the users to be activated within the active rows determined by the parameters user_subsampling, active_user_first and active_user_last. In each row, it allows random sampling of round(user_subsampling*number_of_users_in_row) users for activation.

The value 1 activates all the users within the active rows.

num_ant_x integer, num_ant_y integer, num_ant_z integer, ant_spacing float

 

The basestation antenna parameters. num_ant_x, num_ant_y, num_ant_z represent the number of antenna elements in x-y-z dimensions. The antenna spacing between array elements is determined as (ant_spacing x wavelength).

An antenna array (UPA) of (num_ant_x x num_ant_y x num_ant_z) elements is adopted for each active basestation.

The axes of the antennas match the axes of the ray-tracing scenario.

num_ant_MS_x integer, num_ant_MS_y integer, num_ant_MS_z integer, ant_spacing_MS float 

 

The UE antenna parameters. num_ant_MS_x, num_ant_MS_y, num_ant_MS_z represent the number of antenna elements in x-y-z dimensions. The antenna spacing between array elements is determined as (ant_spacing_MS x wavelength).

An antenna array (UPA) of (num_ant_MS_x x num_ant_MS_y x num_ant_MS_z) elements is adopted for each active UE.

The axes of the antennas match the axes of the ray-tracing scenario.

enable_BS2BSchannels boolean

 

Enable (1) or disable (0) generation of the channels between basestations

bandwidth float

 

Total bandwidth of the channel in GHz. 

transmit_power float

 

Basestation transmission power in dBm.

pulse_shaping integer in [1, 4]

 

Available pulse shaping choices:

(1) No pulse shaping and matched filter (Equivalent to DeepMIMO v1),

(2) sinc pulse shaping and matched filter,

(3) raised cosine pulse shaping and matched filter,

(4) user-defined pulse shaping and matched filter (Please edit the code in .\DeepMIMO_functions\userdefined_pulse.m).

activate_RX_ideal_LPF boolean

 

Activate (1) ideal receive LPF for pulse shaping choices 2, 3, and 4.

rolloff_factor float in [0, 1]

 

Raised cosine rolloff factor (a value between 0 and 1) 

pulse_upsampling_factor integer

 

Upsampling factor for generating pulses and their convolution.

activate_FD_channels boolean

 

(0) activate time domain (TD) channel impulse response generation for non-OFDM systems

(1) activate frequency domain (FD) channel generation for OFDM systems

num_paths integer in [1, 25]

 

Maximum number of paths to be considered (a value between 1 and 25), e.g., choose 1 if you are only interested in the strongest path 

num_OFDM integer

 

Number of OFDM subcarriers (e.g., 256, 512, 1024)

cyclic_prefix_ratio float in [0, 1]

 

Cyclic prefix ratio. The ratio of the cyclic prefix to the OFDM symbol length.

OFDM_limit,OFDM_sampling_factor integers

 

The constructed channels will be calculated only at the sampled subcarriers to reduce the size of the dataset. The first OFDM_limit subcarriers are subsampled with OFDM_sampling_factor spacing between the selected subcarriers.

For OFDM_limit = 64 and OFDM_sampling_factor = 8, the subcarriers {1, 9, 17, 26, 33, …} are subsampled from the available subcarriers {1, 2, …, 64}.

TDchannel_tap_length integer

 

Channel tap length to generate finite time domain channel impulse responses

saveDataset boolean

 

Autosaving option for the dataset.

(1) The generated dataset will be saved to the file ‘./DeepMIMO_dataset/DeepMIMO_dataset.mat’

(0) The generated dataset will only be returned but not saved.

Output Parameters

Examples

Parameters file in the example

DeepMIMO v2 Features

  • Includes all features of DeepMIMO v1

  • Optimized memory requirements and generation speed

  • Generates the channels between BSs and UEs

  • Generates the channels between BSs and BSs (enabling integrated access-backhaul, etc.)

  • Allows for multiple antennas at both the BSs and UEs

  • Generates OFDM and time-domain channels

  • Outputs path parameters, path-loss, distances, among other possible outputs

  • Outputs transmitter/receiver locations

  • Available in Matlab, Octave, and Python

How Does it Work?

DeepMIMO v2 dataset generator processes the input ray-tracing parameters to generate the output dataset based on the parameters’ values specified in the DeepMIMO parameters file. 

 

deepmimowebpage-01

 

[Figure with the parameter list and possible outputs]

 — outputs (on the figure)  Generated datasets can include the information about

  • MIMO OFDM wireless channels 
  • Locations of the users and basestations
  • Path information (AoA, AoD, path loss etc.)
  • Line-of-sight path availability
which can be activated based on the defined set of parameters.

Check the detailed documentation below for more information about the DeepMIMO v2 parameters and outputs

How to Generate a DeepMIMO v2 Dataset?

Step 1: (Generator Package)

  • Install DeepMIMO package from pip by
				
					pip install DeepMIMO
				
			

Step 2: (Scenario)

  • Select and download a scenario from the scenarios page.
  • Extract scenario folder into a dataset folder.

Step 3: (Parameter Configuration and Dataset Generation)

  • Start a new python script as follows
				
					import DeepMIMO

# Load the default parameters
parameters = DeepMIMO.default_params() 

# Set scenario name
parameters['scenario'] = 'O1_60' 

# Set the main folder containing extracted scenarios
parameters['dataset_folder'] = r'C:\Users\xxx\Desktop\scenarios'

# Generate data
dataset = DeepMIMO.generate_data(parameters)
				
			
  • Configure the parameters (For details, please refer to the input/output parameters and examples below)
  • Run the code to generate the dataset!

Input Parameters

dataset_folder string


Folder of the unzipped scenarios. Inside the dataset folder, each scenario should have their own folder with the dataset files inside.

				
					# If the O1_60 scenario is extracted in "C:/dataset/" folder, set
parameters['dataset_folder'] = r'C:/dataset/'

# The default value is set as './Raytracing_scenarios/'
				
			

scenario string


Name of the scenario to be loaded. To check and download available scenarios, please check the scenarios page.

				
					# To load scenario O1_60, set the dictionary variable by
parameters['scenario'] = 'O1_60'
				
			

Dynamic scenario settings – first_scene, last_scene integers

 

[For dynamic scenarios] Determines the range of dynamic scenario scenes to be loaded [scene_first, scene_last]
				
					# To load the first five scenes, set
parameters['dynamic_settings']['first_scene'] = 1
parameters['dynamic_settings']['last_scene'] = 5
				
			

num_paths integer in [1, 25]

 

Maximum number of paths to be considered (a value between 1 and 25), e.g., choose 1 if you are only interested in the strongest path 

				
					# To only include 10 strongest paths in the channel computation, set
parameters['num_paths'] = 10
				
			

active_BS integer numpy array

The ID of the basestations to be included in the dataset. The basestation IDs can be selected from the scenario description. In the final dataset, the activated basestations IDs are renumbered in the same order starting from 1 to the number of active basestations.

				
					# To activate only the first basestation, set
parameters['active_BS'] = np.array([1])
				
			
				
					# To activate the basestations 1, 5, and 8, set
parameters['active_BS'] = np.array([1, 5, 8])
				
			

user_row_first, user_row_last integers

 

The range of rows are determined by these parameters. 

Specifically, the row of users with the ID in the range [user_row_firstuser_row_last] are selected.

				
					# To activate the user rows 1-5, set
parameters['user_row_first'] = 1
parameters['user_row_last'] = 5
				
			

row_subsampling float in the range (0, 1]

 

This parameter determines the ratio of the rows to be activated within the interval [user_row_firstuser_row_last].

Specifically, it randomly samples round(row_subsampling*(user_row_last-user_row_first)) rows within the given interval.

The value 1 activates all the rows within the interval.

				
					# To activate the half of the selected rows randomly, set
parameters['row_subsampling'] = 0.5
				
			

user_subsampling float in the range (0,1)

 

This parameter determines the ratio of the users to be activated within the active rows determined by the parameters row_subsampling, user_row_first and user_row_last. In each row, it allows random sampling of round(user_subsampling*number_of_users_in_row) users for activation.

The value 1 activates all the users within the active rows.

				
					# To activate the half of the users in each selected row randomly, set
parameters['user_subsampling'] = 0.5
				
			

User antenna – shape integer numpy array, spacing float

The user antenna parameters. shape is a 3-dimensional array of number of antenna elements in x-y-z dimensions. The antenna spacing between array elements is determined as (spacing x wavelength).

An antenna array (UPA) of (shape[0] x shape[1] x shape[2]) elements is adopted for each active UE.

The axes of the antennas match the axes of the ray-tracing scenario.

				
					# To adopt a 4 element ULA in y direction, set
parameters['ue_antenna']['shape'] = np.array([1, 4, 1])
				
			
				
					# To adopt a 4x2 UPA in y-z directions with spacing 0.5*wavelength, set
parameters['ue_antenna']['shape'] = np.array([1, 4, 2])
parameters['ue_antenna']['spacing'] = 0.5
				
			

Basestation antenna – shape integer numpy array, spacing float

 

The basestation antenna parameters. shape is a 3-dimensional array of number of antenna elements in x-y-z dimensions. The antenna spacing between array elements is determined as (spacing x wavelength).

An antenna array (UPA) of (shape[0] x shape[1] x shape[2]) elements is adopted for each active BS.

The axes of the antennas match the axes of the ray-tracing scenario.

				
					# To adopt a 4 element ULA in y direction, set
parameters['bs_antenna']['shape'] = np.array([1, 4, 1])
				
			
				
					# To adopt a 4x2 UPA in y-z directions with spacing 0.5*wavelength, set
parameters['bs_antenna']['shape'] = np.array([1, 4, 2])
parameters['bs_antenna']['spacing'] = 0.5
				
			

enable_BS2BS boolean

 

Enable (1) or disable (0) generation of the channels between basestations

				
					# To generate basestation to basestation output variables, set
parameters['enable_BS2BS'] = True
				
			

tx_power float

Basestation transmission power in dBm.

				
					# For 30 dBm transmit power, set
parameters['tx_power'] = 30
				
			

activate_OFDM boolean

 

(0) activate time domain (TD) channel impulse response generation for non-OFDM systems

(1) activate frequency domain (FD) channel generation for OFDM systems

				
					# For OFDM channels, set
parameters['activate_OFDM'] = 1
				
			
				
					# For time-domain channels, set
parameters['activate_OFDM'] = 0
				
			

OFDM – bandwidth float

Total bandwidth of the channel in GHz. 

				
					# To generate channels at 50 MHz bandwidth, set
parameters['OFDM']['bandwidth'] = 0.05
				
			

OFDM – subcarriers integer

 

Number of OFDM subcarriers

				
					# To generate OFDM channels with 256 subcarriers, set
parameters['OFDM']['subcarriers'] = 256
				
			

OFDM – subcarriers_limit, subcarriers_sampling integers

 

The constructed channels will be calculated only at the sampled subcarriers to reduce the size of the dataset. The first subcarriers_limit subcarriers are subsampled with OFDM_sampling_factor spacing between the selected consecutive subcarriers.

For subcarriers_limit = 64 and OFDM_sampling_factor = 8, the subcarriers {1, 9, 17, 26, 33, …} are subsampled from the available subcarriers {1, 2, …, 64}.

				
					# To sample first 64 subcarriers by 8 spacing between each, set
parameters['OFDM']['subcarriers_limit'] = 64
parameters['OFDM']['subcarriers_sampling'] = 8
				
			

OFDM – cyclic_prefix_ratio float in [0, 1]

 

Cyclic prefix ratio. The ratio of the cyclic prefix to the OFDM symbol length.

				
					# For a cyclic prefix duration equal to the 25% of an OFDM symbol, set
parameters['OFDM']['cyclic_prefix_ratio'] = 0.25
				
			

OFDM – pulse_shaping integer in [0, 2] or function

 

Available pulse shaping choices:

(0) No pulse shaping and matched filter (Equivalent to DeepMIMO v1),

(1) sinc pulse shaping and matched filter,

(2) raised cosine pulse shaping and matched filter with a roll-off factor defined by rolloff_factor float in [0, 1],

(function) provide a pulse shaping function of time

				
					# With no pulse shaping, equivalently to DeepMIMOv1, set
parameters['OFDM']['pulse_shaping'] = 0
				
			
				
					# For sinc pulse shape, set
parameters['OFDM']['pulse_shaping'] = 1
				
			
				
					# For raised cosine pulse shape with a roll-off factor 0.5, set
parameters['OFDM']['pulse_shaping'] = 2
parameters['OFDM']['rolloff_factor'] = 0.5
				
			
				
					# For a custom delta function define
def pulse_delta(t):
    pulse = np.zeros(t.shape)
    pulse[t==0] = 1
    
# and set
parameters['OFDM']['pulse_shaping'] = pulse_delta
				
			

OFDM – low_pass_filter_ideal boolean

 

(0) Applies no LPF at the receiver

(1) Activates ideal receive LPF for pulse shaping choices 2, 3, and custom options. 

				
					# For an ideal LPF (rectangular in frequency domain and sinc in time domain), set
parameters['OFDM']['low_pass_filter_ideal'] = 1
				
			

OFDM – upsampling_factor integer

Upsampling factor for generating pulses and their convolution.

				
					#For an upsampling factor of 50 in the generation of the pulses and LPF, set
parameters['OFDM']['upsampling_factor'] = 50
				
			

Output Parameters

Examples